




# Contents:

| Int | roduction                                     | 03 |
|-----|-----------------------------------------------|----|
| 01  | horizontal directional drilling               |    |
|     | <pre>phase 1 : drilling the pilot hole</pre>  | 04 |
|     | <pre>phase 2 : enlarging the pilot hole</pre> | 06 |
|     | <pre>phase 3 : pulling the pipe string</pre>  | 80 |
| 02  | pipe bursting                                 | 10 |
| 03  | pulling through a casing                      | 12 |
| 04  | the benefits of trenchless pipe laying        | 16 |
| 05  | the PAM offer                                 | 18 |
| 06  | anchoring technologies                        | 20 |
| 07  | the material                                  | 22 |
| 80  | the PAM service                               | 24 |
| 09  | the PAM experience                            | 26 |
| 10  | the PAM range                                 | 28 |
|     |                                               |    |



# Trenchless pipe laying



Ductile iron represents a reliable and advantageous alternative to the materials normally used in horizontal directional drilling. The sturdiness, modularity and durability of cast iron pipes is combined with proven technology to enable pipeline flexibility.

### A little history

The horizontal directional drilling technique appeared at the beginning of the 20th century but only started to interest the oil industry at the end of the 1920s. A large number of improvements, in particular to the guidance system and the drilling equipment was needed before it was possible to progress in the 1930s from drilling "at an angle" to true directional drilling that could follow a curved path.

The further improvement in the 1970s in hydraulics have enabled uninterrupted drilling and the pulling through of rods to a predetermined profile. With the development of location tools, horizontal directional drilling has truly become an effective technique.

## 3 types of implementation

The development of ductile iron pipeline anchoring techniques has enabled PAM to offer complete solutions for trenchless pipe laying.

Based on the mechanical strength and the angular deflection capability of Universal Ve self-anchored joints, PAM has chosen 3 trenchless pipe laying techniques:

horizontal directional drilling, pipe bursting and pulling into a sleeve.

«There are places where being unobtrusive is paramount.»





# Drilling the pilot hole

A drilling machine located at the pipe's exit point will carry out the pilot drill to the pipe string start point. An electronic sonde, located in the drilling head and coupled with a detection and guidance system will enable the planned path to be followed with great accuracy (+/- 5 centimeters).



Horizontal directional drilling enables a pipeline to pass under an obstacle, such as a canal, a river or a road. Unlike horizontal boring technique that require major excavation at both ends, the curved trajectory of horizontal directional drilling enables the pipeline to pass under obstacles starting from ground level.

Horizontal directional drilling performance depends on several factors:

- nature of the ground
- stratigraphy
- drilling radius
- profile regularity
- nature of the pipeline
- installation footprint..

#### Each situation has its own solution!

Only certain soils remain unsuitable for the horizontal directional drilling technique (mainly liquefied clay and gravel) as the drilling heads are selected for conditions from soft ground to very hard rock such as granite or even basalt.

## Drilling with 3 tools

The **drilling head**, fitted with a cutting head suited to the ground, injection nozzles and a sonde, is driven by a string of hollow steel tubes: the **drilling rods**.

The drilling rods are used to:

- push the drilling head
- rotate the drilling head and its tools
- direct curved drilling in a vertical and/or horizontal direction
- transport the drilling fluid
- pull the boring tools
- install the final pipeline

The transmitting sonde located in the drilling head continuously reports its altimetric and planimetric position. This enables the operator to guide the drilling accurately using the information they see on their Since the drilling head is asymmetric or fitted with independent rollers, its trajectory can be modified during continuing drilling.

There are different drilling tools suitable for the constraints presented by the ground encountered (boring head, enlarging cone, diamond tip, etc.).





## Pipe laying by HDD\* to DN 1000

Simple and easy to use and supplied as 6 or 7 meters pipes, PAM pipes feature a TT (all-terrain) external barrier coating, suited to installation using horizontal directional drilling.

(\*) Horizontal directional drilling

Horizontal directional drilling



# **Enlarging the pilot hole**

When the drilling head exits at the opposite end, it is replaced by a boring head that will be pulled in the opposite direction by the drilling unit. Traversing the pilot hole along the entire path, the boring head widens the hole diameter, adapting it to the dimensions required for the pipeline to pass through.



### **Recommendations:**

It is common practice to select the final bore diameter using the following data.

| Length or type<br>of drilling | Final boring<br>diameter             |
|-------------------------------|--------------------------------------|
| less than 50 metres           | <b>D</b> — 0— 1.2 X <b>D</b>         |
| from 50 to 100 metres         | <b>D</b> — <b>O</b> — 1.3 X <b>D</b> |
| from 100 to 300 metres        | D — 1.4 X D                          |
| more than 300 metres          | D — 1.5 X D                          |
| drilling through rock         | D - 1.5 X D                          |

**D** = pipe socket outside diameter

The bore diameter varies according to the diameter of the pipeline to be installed as well as the drilling length, the nature of the ground, the curve radius, etc. It may be necessary to carry out successive boring operations, using boring tools of increasing diameter, to obtain the correct diameter which is between 1.2 and 1.5 times the pipeline diameter.

The boring head is fitted with injection holes, like the drilling head. Injecting bentonite reduces the effects of heating and friction.

# Did you know

Bentonite is a fine clay mixed with water to form drilling mud. This mud enables the drilling and boring tool to be cooled, consolidates the tunnel wall and even assists drilling due to pressure. It also contributes to the removal of spoil before the pipeline is pulled though. It is possible to slightly adjust the density of this product, sometimes during operation, to facilitate drilling and pulling. Drilling mud is generally recycled and used in a closed loop.

## Where innovation combines with savings

Horizontal directional drilling techniques are innovative in the field of saving energy, saving materials and recycling. Beyond the virtuous circle illustrated by bentonite treatment and reuse, horizontal directional drilling enables a 4X reduction in greenhouse gas emissions compared to a traditional operation. (e.g. emission of 30 kg CO<sub>3</sub>e/linear metre of DN 150 pipeline when laid using horizontal directional drilling compared to 119 kg CO<sub>3</sub>e/linear meter when laid using an open trench).





# Pulling an anchored pipe string

Universal Standard Ve pipes resist very high pulling forces. That makes them the optimum solution for pipe laying using horizontal directional drilling.



### **Ballasting steps**

# PAM has designed and produced pulling heads to DN 1000

Once the boring operation is complete, the tunnel remains filled with bentonite. This acts as an excellent lubricant and facilitates the pulling of pipes by reducing friction and force on the joints.



To reduce the pulling resistance of the assembled pipe string upstream, it may be necessary to install a guidance system fitted with support rollers. Furthermore, for pipelines with a diameter greater than 300mm, the hydrostatic thrust applied by the bentonite requires ballasting through the addition of a temporary flexible conduit within the main pipe.

Ballasting involves introducing a temporary ballast in the main pipe using a secondary conduit in order to centre it in the bentonite filled drilling hole to avoid snagging and friction on the upper part of the vault. Depending on circumstances, either the small internal conduit or the circular space between the two pipes will be filled with water.

# Did you know /

### **Modularity**

The pipes can be pre-assembled as a full length string, pre-mounted in 3-pipe sections, or assembled pipe-by-pipe where site restrictions require. This modularity enables upstream constraints associated with the footprint of the project to be addressed. Ductile iron pipes can be laid in sections – a major benefit in this



## Archimedes knew it a long time ago!

Any body plunged into a liquid at rest, completely immersed in it or passing through its free surface, experiences a vertical force, directed upwards and opposed to the weight of the displaced fluid. Without ballasting, cast iron pipes above DN 300 are pressed against the vault of the drilled bore by the hydrostatic thrust.





Pipe bursting is used to replace one damaged pipeline with another of the same diameter or, often, a slightly larger diameter. The old pipeline can be burst in-situ or removed piece by piece and broken up as it is pushed out of the tunnel.

This technique to replace old pipelines enables a damaged pipe to be replaced by a new pre-assembled Universal Ve type ductile iron pipes of an equivalent or slightly greater diameter, depending on the nature of the old pipeline. This technology is also used to considerably reduce the site impact. The pipes are




assembled one by one in a launch pit. The exit pit must be able to contain the extraction machine. A hydraulic device pushes a drill string through the old conduit and on its return, with a bursting head attached, bursts the old pipe with the fragments remaining in situ, while at the same time pulling in the new pipeline.

This replacement procedure can only be used for straight sections. An initial diagnosis is required, in particular by carrying out a video inspection of the pipeline to be replaced to ensure that there are no obstacles to impair its extraction or destruction. Where branches exist, these must first be separated from the main pipe and a temporary supply must be provided to ensure water distribution so that service is not interrupted.

## Pipe bursting example

At Chambon Feugerolles, near Saint-Étienne in France, this technique was used for an 80 linear metre section between 2 excavated pits to avoid damaging a paved courtyard in front of the town hall and interrupting the town's summer events.





Pipe bursting replacement



Pipe laying through a casing consists of introducing a pipeline intended to transport a fluid (drinking water, waste water, rain water, dry systems, etc.) within a circular sleeve that already exists or is installed specifically for this application. Ductile iron pipelines are perfectly suited to this application, since the anchored joints can withstand significant pulling forces, while retaining the flexibility offered by elastomer gaskets.



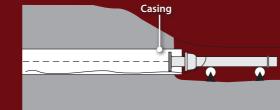
This laying method can be chosen for specific rehabilitation techniques (passing through an existing damaged pipe) or when laying new networks crossing a natural obstacle or in the case of trenchless works.

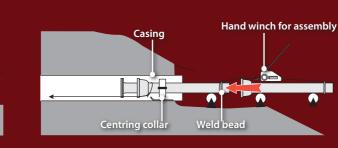
When pulling through a casing, you must first define:

- the centring and guiding of each element within the casing
- the method used to anchor the elements together to guarantee the integrity of the section being installed
- the method used to connect the section passing through the casing to the existing network
- the best pulling mechanism from a technical and economic perspective

The choice of pipeline diameter will be guided either by determining the most suitable hydraulic diameter in the case of a new pipeline, or the inside diameter of the existing pipeline or casing. In parallel, you must ensure that the annular space between the pipe and the casing is sufficiently large to enable the fitting of centring collars that meet the requirements for the guidance and pulling of the conduit within the casing. The nominal diameter chosen, along with the network operating pressure and the pulling force required will enable you to choose the most suitable range of pipes and anchoring method in the PAM range from DN 60 to DN 1200.

To begin with, an access pit or a pipe assembly area will be created where the pulling head anchoring and pipe connection operations can take place. Each pipe is then fitted with centring collars. Their number is first determined according to their material (plastic or metal) and their support capacity. The pipes are then positioned on a wooden or concrete guide along the casing axis.


The pulling device is installed on the first pipe that is then pulled into the casing, with the rear of the pipe overhanging slightly. Different types of pulling mechanisms can then be used depending on the type of pipes installed as well as the length of the string to be pulled. The second pipe is located on the guide and anchored to the first before in turn being pulled into the casing. The process of assembling and pulling the pipes continues until the required length is in place. After pulling the last pipe, the pulling device is removed and tests carried out before connecting the new pipe at both ends.


# Did you know

For pipes with a nominal diameter greater than 800mm or where there are specific difficulties, it is necessary to use special centring and guiding supports. Depending on the project specifics, PAM will investigate the creation of specific supports and arrange for subcontracting of their supply. With all these types of equipment, it is even possible to insert 2 pipelines within a single casing.

Important: the pipes must always be installed by pulling, never by pushing.

# Pulling through a casing







## An economical, durable and unobtrusive solution

Ductile iron has progressively taken its place in the field of horizontal directional drilling thanks to its economic, technical and environmental benefits.



### Lower social costs

- no interference with traffic
- no interruption to services
- less damage to the environment
- little or no risk of accidents
- little or no risk of economic consequences for local businesses
- less noise and air pollution for residents

An ideal solution for a site in a protected environment or an area with a high urban

### Lower indirect costs

- fewer road signs needed
- less site security required
- no diversion costs for distributors
- no need to move street furniture

Savings compared to a traditional site.

### Lower direct costs

- more technical materials
- no back-filling or compacting, no need to repair roads and pavements, etc.
- lower equipment and lorry costs
- specialist workforce
- fewer personnel
- reduced project time

Significant savings compared to a traditional site.











Bonus: trenchless pipe laying significantly reduces greenhouse gas emissions.







### A la carte solutions

With coatings adapted to the ground conditions and the purpose your pipelines will serve (sewage, distribution and transfer of drinking water), PAM offers its range of Universal Ve pipes coated with:

■ Thick polyethylene until DN700



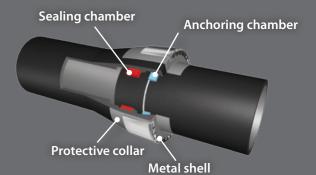
■ Reinforced polyurethane for DN800 to 1000



ZMU cement mortar until DN700 for rocky ground



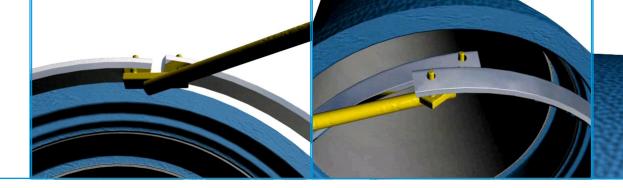
# Did you know


At the end of its life, PAM pipelines have the significant benefit of being infinitely recyclable through local systems (collection and recovery of scrap metal). This benefit arises from the use of ductile iron, which is produced mainly from recycled materials and is itself 100% recyclable without losing its mechanical properties. This optimised re-use of materials makes the resource inexhaustible.

Furthermore, ductile iron produced from mineral sources is completely inert and non toxic.

## Ductile iron

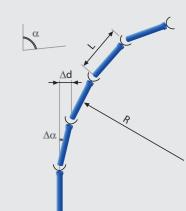
For decades, PAM ductile iron's reputation for strength, durability and reliability has been recognised worldwide.


Universal Ve self-anchored joint: "a proven technology giving access to trenchless operations".



18










# know

To form a 30° curve, only 10 pipes are required!



### Angular deflection and curve radius

| DN   | Joint  | Angular deflection | PFA (bar) | Allowable curv<br>radius (m) |
|------|--------|--------------------|-----------|------------------------------|
| 100  | Uni Ve | 3°                 | 64        | 115                          |
| 150  | Uni Ve | 3°                 | 55        | 115                          |
| 200  | Uni Ve | 3°                 | 50        | 115                          |
| 250  | Uni Ve | 3°                 | 45        | 115                          |
| 300  | Uni Ve | 3°                 | 40        | 115                          |
| 350  | Uni Ve | 3°                 | 38        | 115                          |
| 400  | Uni Ve | 3°                 | 35        | 115                          |
| 450  | Uni Ve | 3°                 | 32        | 115                          |
| 500  | Uni Ve | 3°                 | 30        | 115                          |
| 600  | Uni Ve | 2°                 | 27        | 172                          |
| 700  | Uni Ve | 2°                 | 25        | 172                          |
| 800  | Uni Ve | 2°                 | 25        | 364                          |
| 900  | Uni Ve | 1.5°               | 25        | 445                          |
| 1000 | Uni Ve | 1.2°               | 25        | 572                          |

The maximum allowable pulling forces are established based on the maximum pressure supported by the Universal Ve self-

These values are subject to reduction by taking into account the specific dynamic constraints of each individual project (continuous pulling, pulling by pulling pipe by pipe).

# Allowable pulling forces (kN)

|   | DN    | 0 to 0,4 | 0.5  | 0.7  | 0.9  | 1    | 1.2  |
|---|-------|----------|------|------|------|------|------|
|   | 100   | 87       | 84   | 77   | 70   | 66   | 59   |
|   | 125   | 114      | 109  | 100  | 91   | 87   | 78   |
| l | 150   | 136      | 131  | 120  | 109  | 104  | 93   |
|   | 200   | 201      | 193  | 177  | 161  | 153  | 137  |
|   | 250   | 271      | 260  | 239  | 217  | 206  | 184  |
|   | 300   | 342      | 329  | 301  | 274  | 260  | 233  |
|   | 350   | 426      | 409  | 375  | 341  | 324  | 290  |
|   | 400   | 506      | 486  | 445  | 405  | 384  | 344  |
| l | 450   | 579      | 556  | 510  | 463  | 440  | 394  |
|   | 500   | 667      | 640  | 587  | 533  | 507  | 453  |
|   | 600   | 855      | 821  | 752  | 684  | 650  | 581  |
|   | 700   | 1000     | 961  | 881  | 801  | 761  | 681  |
|   | 800*  | 1225     | 1177 | 1078 | 981  | 932  | 834  |
|   | 900*  | 1473     | 1415 | 1297 | 1179 | 1120 | 1002 |
|   | 1000* | 1725     | 1657 | 1519 | 1381 | 1312 | 1174 |
|   |       |          |      |      |      |      |      |

### (\*) Allowable pulling forces for pipelines DN 800, DN 900 and DN 1000

The values in the table are for information only. Large diameter projects require all elements specific to the project to the taken into account, in particular the profile along its length, geotechnical data and pipe laying constraints. Only recommendations defined by PAM will be binding.

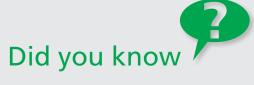
> Ductile iron + self-anchored joint + liner + metal shell = solidity + flexibility + leak tightness!

# A high security technology

For trenchless pipe laying, PAM has designed a particularly effective anchoring system which guarantees optimum sealing and flexibility while supporting pulling efforts as high as 100 tonnes for the largest diameters.






In the pipeline laying field, PAM uses advanced technology that comes directly from oil drilling techniques.

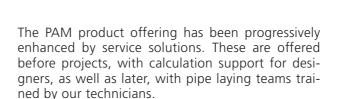


## Drill performance

Depending on the diameter of the pipes to be laid, the length of the path and the nature of the soil, different types of drilling rig must be used.

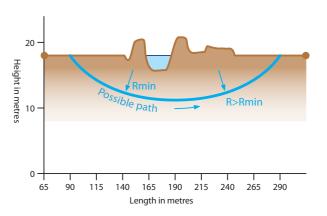
| Types       | of drilling rig | Pulling force in kN  | Maximum torque in kN.m | Mass to be pulled in tonnes | Maximum pipe string length           |
|-------------|-----------------|----------------------|------------------------|-----------------------------|--------------------------------------|
| N°10 : Mini |                 | ≤ 150                | 10 – 15                | < 10                        | E.g.: 500 linear<br>metres in DN 100 |
| N°11 : Midi |                 | > from 150 to ≤ 400  | 15 – 30                | 10 – 25                     | E.g.: 500 linear<br>metres in DN 300 |
| N°12 Maxi   |                 | > from 400 to ≤ 2500 | 30 - 100               | 25 –60                      | E.g.: 500 linear<br>metres in DN 450 |
| N°13: Méga  |                 | > 2500               | > 100                  | >60                         | DN > 500                             |




All PAM joints are protected by a metal shell to guarantee that the elastomer liners will be held in place, particularly in the event of accidental rubbing against the vault during pulling.

Drill utilisation guide:
SAFETY, SITE ORGANISATION, FEEDBACK.
These themes are all covered in the best practice guide issued by SOFFONS(\*)

(\*) Syndicat des Entrepreneurs de Sondages, Forages et Fondations Spéciales - the Union of Surveying, Drilling and Special Foundations Contractors.


# The PAM service





Sales engineering teams and business managers have access to tools and utilities enabling them to examine technical dossiers in detail, accurately calculate allowable pulling forces, the safety coefficients offered as well as the parameters required to ballast the pipe.

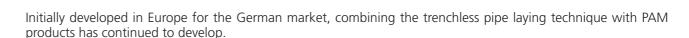
Each study is considered to be unique and is carried out with the engineering consultants responsible for project design.



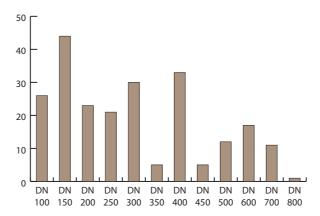
# Did you know

The Moselle river was crossed by a DN 150 pipeline over a length of 210m. The work was carried out by a drilling machine with a capacity of 20 tonnes.

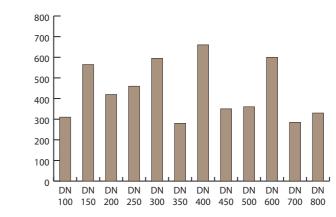
Operations to carry out drilling, boring, deliver and remove the equipment were completed in a little less than 4 days. The operation to pull pre-assembled pipes itself took less than 3 hours. The final 450mm boring took place in a sandy gravel soil.


# From research to implementation

All projects are supported by customised assistance and the initial technical project study guarantees the success of the pulling operation.


Projects examined by our sales engineering teams are carried out according to the ISO 13470(\*) standard and comply with the French Guide of Practice Fascicule 70 relating to initial geotechnical research.

(\*) Trenchless applications of ductile iron pipe systems - Product design and installation







Operating in the trenchless field in France for more than 20 years, PAM has been the supplier to more than 250 construction sites in Europe, the largest in terms of diameter being in the Netherlands (DN 800). With lengths varying between 25 and 1500 linear metres (DN 150), this process can meet the requirements of all projects.







Average length in m by DN



## Many references, one expertise

With more than 20 years working in the field of trenchless pipe laying, PAM has gained sufficient experience to operate on the most technically demanding sites.

More than 90,000 linear metres of PAM pipes have been laid to-date using horizontal directional drilling.

The equivalent of 2 Channel tunnels!

# The PAM range

### **DIREXIONAL TT PE and TT PUX pipes** (normal situations)

| DN   | L    | е    | DE     | В      | Mass | Exterior | Part no. |
|------|------|------|--------|--------|------|----------|----------|
| mm   | mm   | mm   | mm     | mm     | kg   | coating  |          |
| 100  | 5.95 | 6.0  | 118.0  | 188.0  | 118  | TT PE    | 227925   |
| 125  | 5.95 | 6.0  | 144.0  | 215.0  | 147  | TT PE    | 227926   |
| 150  | 6.00 | 6.0  | 170.0  | 230.0  | 175  | TT PE    | 227928   |
| 200  | 5.96 | 6.3  | 222.0  | 290.0  | 241  | TT PE    | 227929   |
| 250  | 5.95 | 6.8  | 274.0  | 350.0  | 320  | TT PE    | 227937   |
| 300  | 5.95 | 7.2  | 326.0  | 408.0  | 405  | TT PE    | 227938   |
| 350  | 5.97 | 7.7  | 378.0  | 463.0  | 512  | TT PE    | 227945   |
| 400  | 5.97 | 8.1  | 429.0  | 510.0  | 602  | TT PE    | 227946   |
| 450  | 5.97 | 8.6  | 480.0  | 570.0  | 718  | TT PE    | 228956   |
| 500  | 5.97 | 9.0  | 532.0  | 625.0  | 833  | TT PE    | 227947   |
| 600  | 5.97 | 9.9  | 635.0  | 740.0  | 1067 | TT PE    | 227948   |
| 700  | 5.97 | 10.8 | 736.6  | 855.0  | 1399 | TT PE    | 227949   |
| 800  | 6.88 | 11.7 | 840.4  | 980.0  | 1941 | TT PUX   | 229157   |
| 900  | 6.87 | 12.6 | 943.2  | 1087.0 | 2367 | TT PUX   | 229158   |
| 1000 | 6.88 | 13.5 | 1046.0 | 1191.0 | 2814 | TT PUX   | 229160   |

Sewage and Wastewater: INTEGRAL range - available upon request

### **DIREXIONAL TT ZMU pipes** (for rocky soils)

| DN  | L    | e    | DE    | В     | Mass   | Exterior | Part no. |
|-----|------|------|-------|-------|--------|----------|----------|
| mm  | mm   | mm   | mm    | mm    | kg     | coating  |          |
| 100 | 5.97 | 6.0  | 128.0 | 196.0 | 133.5  | TT ZMU   | 224302   |
| 125 | 5.97 | 6.0  | 154.0 | 225.0 | 166.0  | TT ZMU   | 224303   |
| 150 | 5.97 | 6.0  | 180.0 | 251.0 | 195.4  | TT ZMU   | 224305   |
| 200 | 5.97 | 6.3  | 232.0 | 307.0 | 268.1  | TT ZMU   | 224307   |
| 250 | 5.97 | 6.8  | 284.0 | 367.0 | 353.5  | TT ZMU   | 224308   |
| 300 | 5.97 | 7.2  | 336.0 | 425.0 | 445.5  | TT ZMU   | 224309   |
| 350 | 5.97 | 7.7  | 378.0 | 480.0 | 527.0  | TT ZMU   | 224310   |
| 400 | 5.97 | 8.1  | 439.0 | 535.0 | 650.3  | TT ZMU   | 224311   |
| 500 | 5.97 | 9.0  | 542.0 | 647.0 | 891.4  | TT ZMU   | 224312   |
| 600 | 5.97 | 9.9  | 645.0 | 750.0 | 1135.4 | TT ZMU   | 224313   |
| 700 | 5.97 | 10.8 | 748.0 | 865.0 | 1392.8 | TT ZMU   | 224314   |

### **Nature of coatings**

TT PUX: reinforced polyurethane coating

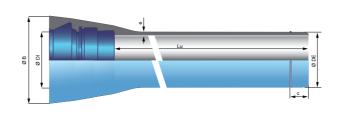
thickness: 2.00 to 2.50mm according to DN

thickness: 5,00mm

| DN  | L    | e    | DE    | В     | Mass   | Exterior | Part no. |
|-----|------|------|-------|-------|--------|----------|----------|
| mm  | mm   | mm   | mm    | mm    | kg     | coating  |          |
| 100 | 5.97 | 6.0  | 128.0 | 196.0 | 133.5  | TT ZMU   | 224302   |
| 125 | 5.97 | 6.0  | 154.0 | 225.0 | 166.0  | TT ZMU   | 224303   |
| 150 | 5.97 | 6.0  | 180.0 | 251.0 | 195.4  | TT ZMU   | 224305   |
| 200 | 5.97 | 6.3  | 232.0 | 307.0 | 268.1  | TT ZMU   | 224307   |
| 250 | 5.97 | 6.8  | 284.0 | 367.0 | 353.5  | TT ZMU   | 224308   |
| 300 | 5.97 | 7.2  | 336.0 | 425.0 | 445.5  | TT ZMU   | 224309   |
| 350 | 5.97 | 7.7  | 378.0 | 480.0 | 527.0  | TT ZMU   | 224310   |
| 400 | 5.97 | 8.1  | 439.0 | 535.0 | 650.3  | TT ZMU   | 224311   |
| 500 | 5.97 | 9.0  | 542.0 | 647.0 | 891.4  | TT ZMU   | 224312   |
| 600 | 5.97 | 9.9  | 645.0 | 750.0 | 1135.4 | TT ZMU   | 224313   |
| 700 | 5.97 | 10.8 | 748.0 | 865.0 | 1392.8 | TT ZMU   | 224314   |

TT ZMU: cement mortar coating

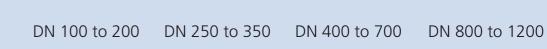
TT PE: extruded HDPE coating

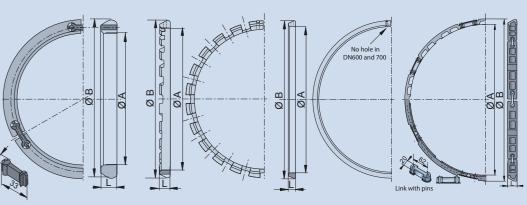

thickness: 1,800µm



TT PE – DN 100 to DN 700




TT PUX – DN 800 to DN 1000




TT ZMU - DN 100 to DN 700

# **Universal Ve self-anchored joints**

| DN   | EPDM Stan | dard gasket | Metal loc | king ring |
|------|-----------|-------------|-----------|-----------|
| mm   | Part no.  | Mass (kg)   | Part no.  | Mass (kg) |
| 100  | JSB10BA   | 0.196       | 110259    | 0.500     |
| 125  | JSB12BA   | 0.244       | 124151    | 0.700     |
| 150  | JSB15BA   | 0.285       | AKB15E    | 0.900     |
| 200  | JSB20BA   | 0.384       | AKB20E    | 1.300     |
| 250  | JSB25BA   | 0.497       | AKB25E    | 1.300     |
| 300  | JSB30BA   | 0.712       | AKB30E    | 1.800     |
| 350  | JSB35BA   | 0.898       | JKB35E    | 2.300     |
| 400  | JSB40BA   | 1.077       | JKB40E    | 3.600     |
| 450  | JSB45BA   | 1.323       | JKB45E    | 4.050     |
| 500  | JSB50BA   | 1.544       | JKB50E    | 4.600     |
| 600  | JSB60BA   | 2.162       | JKB60E    | 8.600     |
| 700  | JSB70BA   | 2.871       | 110671    | 9.700     |
| 800  | JSB80BA   | 3.670       | JFB80S    | 17.300    |
| 900  | JSB90BA   | 4.612       | JFB90S    | 22.600    |
| 1000 | JSC10BA   | 5.588       | JFC10S    | 24.800    |
|      |           |             |           |           |





**Universal Ve metal retaining rings** 

Assembly/dismantling accessories and tools Please contact our sales and sales engineering teams

# The PAM range

### **HDD** metal protection cone

| <b>DN</b><br>mm | Part no. | <b>Mass</b><br>kg | Width<br>mm | Thickness<br>mm |
|-----------------|----------|-------------------|-------------|-----------------|
| 100             | 110326   | 0.70              | 120         | 1.00            |
| 125             | 209752   | 0.75              | 120         | 1.00            |
| 150             | 110325   | 0.85              | 120         | 1.00            |
| 200             | 110324   | 1.20              | 130         | 1.00            |
| 250             | 110323   | 1.50              | 140         | 1.00            |
| 300             | 110322   | 1.80              | 155         | 1.00            |
| 350             | 207176   | 2.80              | 160         | 1.20            |
| 400             | 110321   | 3.00              | 170         | 1.20            |
| 450             | 211369   | 3.20              | 170         | 1.20            |
| 500             | 110320   | 3.50              | 180         | 1.20            |
| 600             | 110327   | 5.00              | 195         | 1.20            |
| 700             | 110328   | 6.00              | 210         | 1.20            |
| 800             | 228265   | 8.00              | 192         | 1.50            |
| 900             | 228268   | 11.70             | 285         | 1.50            |
| 1000            | 228270   | 9.00              | 192         | 1.50            |

| DN<br>mm | Exterior<br>coating | Part no.                    | Туре           |
|----------|---------------------|-----------------------------|----------------|
| 100      | PE                  | JSB10YAT                    | TT PE muff     |
| 125      | PE                  | JSB12YAT                    | TT PE muff     |
| 150      | PE                  | JSB15YAT                    | TT PE muff     |
| 200      | PE                  | JSB20YAT                    | TT PE muff     |
| 250      | PE                  | JSB25YAT                    | TT PE muff     |
| 300      | PE                  | JSB30YAT                    | TT PE muff     |
| 350      | PE                  | 158071                      | Tubular sleeve |
| 400      | PE                  | 158080                      | Tubular sleeve |
| 450      | PE                  | 158094                      | Tubular sleeve |
| 500      | PE                  | 158094                      | Tubular sleeve |
| 600      | PE                  | 123649                      | Tubular sleeve |
| 700      | PE                  | 211186                      | Tubular sleeve |
| 800      | PUX                 | 30 m roll                   | Band & roll    |
| 900      | PUX                 | réf. 158030<br>+ band (x50) | Band & roll    |
| 1000     | PUX                 | réf. 158098                 | Band & roll    |

### TT PE & TT PUX elastomeric muff



### TT ZMU elastomeric muff

| DN  | Exterior | Part no. | Туре     |
|-----|----------|----------|----------|
| mm  | coating  |          |          |
| 100 | TT ZMU   | 110823   | ZMU muff |
| 125 | TT ZMU   | 173263   | ZMU muff |
| 150 | TT ZMU   | 110821   | ZMU muff |
| 200 | TT ZMU   | 110822   | ZMU muff |
| 250 | TT ZMU   | 110828   | ZMU muff |
| 300 | TT ZMU   | 110834   | ZMU muff |
| 350 | TT ZMU   | 110789   | ZMU muff |
| 400 | TT ZMU   | 110750   | ZMU muff |
| 500 | TT ZMU   | 110773   | ZMU muff |
| 600 | TT ZMU   | 110776   | ZMU muff |
| 700 | TT ZMU   | 110026   | ZMU muff |

### Pulling head for horizontal directional drilling

| DN   | Part no.     | Part no.        | Туре      | Mass    |
|------|--------------|-----------------|-----------|---------|
| mm   |              |                 |           | kg      |
| 100  | 173371 - E01 | Universal Tis-K | One piece | 21.00   |
| 125  | 177688 - E01 | Universal Tis-K | One piece | 21.00   |
| 150  | 177686 - E01 | Universal Tis-K | One piece | 31.00   |
| 200  | 177685 - E01 | Universal Tis-K | One piece | 42.00   |
| 250  | 177684 - E01 | Universal Tis-K | One piece | 70.00   |
| 300  | 177683 - E01 | Universal Tis-K | 2 pieces  | 200.00  |
| 350  | 177689 - E01 | Universal Ve    | 2 pieces  | 260.00  |
| 400  | 215720 - E01 | Universal Ve    | 2 pieces  | 290.00  |
| 450  | 184694 - E01 | Universal Ve    | 2 pieces  | 370.00  |
| 500  | 215792 - E01 | Universal Ve    | 2 pieces  | 445.00  |
| 600  | 215897 - E01 | Universal Ve    | 2 pieces  | 604.00  |
| 700  | 215988 - E01 | Universal Ve    | 2 pieces  | 1050.00 |
| 800  | 229305       | Universal Ve    | 2 pieces  | 1450.00 |
| 900  | 229307       | Universal Ve    | 2 pieces  | 1920.00 |
| 1000 | 229309       | Universal Ve    | 2 pieces  | 2110.00 |







heat-shrink sleeve

Accessories and assembly/dismantling tools
Please contact our sales and sales engineering teams

#### SAINT-GOBAIN PAM worldwide

#### ALGERI

#### **SAINT-GOBAIN PAM ALGERIE**

Z.I. Sidi Abdelkader-Ben Boulaid - BP 538 09000 - BLIDA - Algeria Phone: + 213 (0) 25 36 00 60

#### ARGENTIN.

#### SAINT-GOBAIN PAM ARGENTINA

Bouchard y Enz 1836 - I I AVALLOL - BUENOS AIRES - Argentina

#### Phone: + 54 11 42 98 9600

#### AUSTRALIA

#### SAINT-GOBAIN PAM

15 Edgars Road THOMASTOWN VIC 3074 - Australia Phone: + 61 (0) 3 9358 6122

#### ALISTRI

### SAINT-GOBAIN GUSSROHRVERTRIEB ÖSTERREICH GmbH

Archenweg, 52 A-6020 - INNSBRUCK - Austria Phone: + 43 512 341 717-0

#### **BELGIUN**

#### SAINT-GOBAIN PIPE SYSTEMS

Raatshovenstraat, n°2 B-3400 - LANDEN - Belgium Phone: + 32 11 88 01 20

#### **BRAZI**

#### SAINT-GOBAIN CANALIZACAO LTDA

Praia de Botafogo 440 7° andar 22250-040 - RIO DE JANEIRO - RJ - Brazil Phone: + 55 21 2128 1677

#### HILE

#### SAINT-GOBAIN PAM CHILE

Antillanca Norte 600 Parque Industrial Vespucio, Comuna de Pudahuel SANTIAGO DE CHILE - Chile Phone: + 562 444 13 00

#### VIVIU-

#### SAINT-GOBAIN PAM CHINA (SHANGAI)

1812 Ocean Tower 550 Yan'An East Road - SHANGAI 200001 - China Phone: + 86 21 6361 2165

#### SAINT-GOBAIN PAM CHINA (XUZHOU)

PC 221004 - XUZHOU - Jiangsu Province - China Phone: + 86 516 8787 8107

#### SAINT-GOBAIN PAM CHINA (MAANSHAN)

Hua Gong Road Cihu PC 243052 - MAANSHAN Anhui Province - China Phone: + 86 555 350 8040

#### COLOMBI

#### SAINT-GOBAIN PAM COLOMBIA

Terminal terrestre de carga de Bogota Etapa 1, Bodega 9, Modulo 3 Km 3,5 costado sur autopista - Medellin COTA CUNDINAMARCA - Colombia Phone: + 57 (1) 841 5832

#### CZECH REPUBLIC

#### SAINT-GOBAIN PAM CZ s.r.o.

Počernická 272/96 108 03 Praha 10 - Czech Republic Phone: + 296 411 746

#### FINI ANI

#### **SAINT-GOBAIN PIPE SYSTEMS OY**

Nuijamiestentie 3A FIN-00400 - HELSINKI - Finland Phone: + 358 207 424 600

#### FRANCE & DOM-TON

#### SAINT-GOBAIN PAM (HEAD OFFICE)

91 Avenue de la Libération 54076 NANCY CEDEX - France Phone: +33 3 83 95 20 00

#### SAINT-GOBAIN PAM

(France Commercial Department) CRD – Chemin de Blénod – B.P. 109 54704 PONT A MOUSSON CEDEX - France Phone: +33 3 83 80 73 00

#### SAINT-GOBAIN PAM

(Europe and International Commercial Departments) 21 avenue Camille Cavallier 54705 - PONT A MOUSSON CEDEX - France Phone: + 33 3 83 80 67 89

#### SAINT-GOBAIN PAM

(Local Agency of The Antilles) Rue Alfred Lumière - ZI de Jarry - BP 2104 97122 - BAIE MAHAULT - Guadeloupe Phone: + 33 590 26 71 46

#### SAINT-GOBAIN PAM

(Local Agency of Indian Ocean) 16, Rue Claude Chappe - ZAC 2000 97420 - LE PORT - Reunion Island Phone: + 33 262 55 15 34

#### SERMANY

#### SAINT-GOBAIN PAM DEUTSCHLAND

Saarbrucker Strasse 51 66130 - SAARBRUCKEN - Germany Phone: + 49 681 87 010

#### GREEC

#### SAINT-GOBAIN SOLINOURGEIA

SKIIssouras Str. GR 14482 - METAMORFOSI - ATHENS - Greece Phone: + 30 210 28 31 804

#### Hong Kone

#### SAINT-GOBAIN PIPELINES

H15/F Hermes Commercial Centre - 4-4A Hillwood Road TSIM SHA TSUI - KOWLOON - Hong Kong Phone: + 852 27 35 78 26

#### IND

#### **SAINT-GOBAIN PAM**

Grindwell Norton Ltd 5th Level, Leela Business Park - Andheri-Kurla Road MUMBAI - 400059 - India Phone: + 91 22 402 12 121

#### ITAL

#### SAINT-GOBAIN PAM ITALIA SPA

Via Romagnoli n°6 I-20146 - MILAN - Italy Phone: + 39 02 42 431

#### **JORDA**

#### SAINT-GOBAIN PAM REGIONAL OFFICE

Abu Zaid Center - Office # 8 35 Saad Bin Abi Waqqas St, - PO BOX 831000 11183 AMMAN - Jordan Phone: + 962 6 551 4438

#### MOROCCO

#### SAINT-GOBAIN PAM REGIONAL OFFICE

2 allée des Figuiers - Aïn Sebaâ CASABLANCA - Morocco Phone: + 212 522 66 57 31

#### **MEXICO**

#### SAINT-GOBAIN PAM MEXICO

HORACIO 1855-502 - Colonia Los Morales - Polanco 11510 - MEXICO D.F. - Mexico Phone: + 52 55 5279 1657

#### JETHEDI ANDC

#### SAINT-GOBAIN PIPE SYSTEMS

Markerkant 10-17 1316 - AB ALMERE - Nederland Phone: + 31 36 53 333 44

#### )RWAY

#### SAINT-GOBAIN BYGGEVARER AS

Division PAM Norge Brobekkveien 84 0582 - OSLO - Norway Phone: + 47 23 17 58 60

#### PERU

#### SAINT-GOBAIN PAM PERU

Avenida de los Faisanes N° 157 - Chorillos LIMA 09 - Peru Phone: + 511 252 40 34/35

#### POLANI

### SAINT-GOBAIN CONSTRUCTION PRODUCTS POLSKA SP Z.O.O - PAM Business Unit

UI. Cybernetyki 21 PL-02-677 WARSZAWA - Poland Phone: + 48 22 751 41 72

#### **PORTUGA**

#### SAINT-GOBAIN PAM PORTUGAL

Est. Nac. 10 - Lugar de D. Pedro -Apartado 1708 P-2691-901 - SANTA IRIA DE AZOIA - Portugal Phone: + 351 218 925 000

#### ROMANI

#### SAINT-GOBAIN CONSTRUCTION PRODUCTS

ROMANIA S.R.L. - PAM Business Unit Strada Tipografilor nr. 11-15, Corp 84, Etaj 3, Birourile 323-338, Sector 1, BUCHAREST - Romania Phone: + 40 21 207 57 37

#### SLOVAKI

#### SAINT-GOBAIN CONSTRUCTION PRODUCTS

PAM Business Unit Stara Vajnorska 139 83104 - BRATISLAVA - Slovakia Phone: + 421 265 45 69 61

#### SOLITH AFRIC

### SAINT-GOBAIN CONSTRUCTION PRODUCTS PAM Business Unit

N1 Business Park
Corner Olievenhoutbosch Road & Old Johannesburg Road
Samrand - PO BOX 700
GERMISTON - South Africa 1400

#### SPAIN

#### SAINT-GOBAIN PAM ESPANA SA

Phone: +27 12 657 2800

Paseo de la Castellana n°77 - Edificio Ederra - Planta 10 E-28046 - MADRID - Spain Phone: + 34 91 397 20 00

#### LINITED ARAB EMIRATE

#### SAINT-GOBAIN PAM

PO BOX 47102 - Building N° 1092 - Villa N° 7 Muroor Road - ABU DHABI - United Arab Emirates Phone: + 971 2 448 20 10

#### INITED KINGDOM

#### SAINT-GOBAIN PAM UK

Lows Lane - Stanton-by-Dale ILLKESTON - DERBYSHIRE - DE7 4QU United Kingdom Phone: + 44 115 930 5000

#### IETNAM

#### SAINT-GOBAIN PAM

201-203 Cach Mang Thang 8, Ward 4 - District 3 HO CHI MINH CITY - Vietnam Phone: +84 8 39 30 72 74



www.pamline.com

91, avenue de la Libération

Marketing Department –

21, avenue Camille Cavallier

Phone: +33 (0)3 83 80 67 89

54705 PONT-A-MOUSSON CEDEX

**SAINT-GOBAIN PAM** 

54076 NANCY CEDEX

Water & Sewage

**Head office** 

FRANCE

**FRANCE** 

